Формула закона силы притяжения

Блог

2. Предположим, что масса Земли стала в 2 раза, а радиус — в 1,2 раза больше. Определите, во сколько раз изменилась сила тяжести, действующая на тело, находящееся на полюсе.

Р е ш е н и е. По условию задачи силы гравитационного притяжения Луны к Земле и Солнцу взаимно перпендикулярны (рис. 3.6). Рассчитаем силу гравитационного притяжения Луны к Земле.

С1. Какое ускорение сообщает Солнце Земле своим притяжением? Расстояние до Солнца примерно в 24 000 раз больше, чем радиус Земли, а масса Солнца превышает массу Земли в 333 000 раз. (g3 = 10 м/с 2 .)

Заметим, что L = 4R = 8r; R = 2r, соответственно m = 8 m1.

Подставив эти выражения в формулу (1), получим

По теореме Пифагора найдём равнодействующую силу, действующую на Луну,

С2.Вычислите ускорение Луны, движущейся вокруг Земли по окружности. Расстояние между центрами Земли и Луны примите равным 400 000 км. Радиус Земли 6400 км. (g3 = 10 м/с 2 .)

Задача 1. При опытной проверке закона всемирного тяготения сила взаимодействия между двумя свинцовыми шарами массами m1 = 5 кг и m2 = 500 г, расстояние между центрами которых r = 7 см, оказалась равной F = 34 нН. Вычислите по этим данным гравитационную постоянную.

Задача 3. На поверхности Земли находятся два свинцовых шара радиусом R = 10 см каждый. В одном из них вырезана сферическая полость, как показано на рисунке 3.7. Радиус полости r = 5 см, центр полости находится на расстоянии l = 5 см от центра шара. Определите силу гравитационного притяжения шаров. Центры шаров находятся на расстоянии L = 40 см.

Р е ш е н и е. Если бы у правого шара не было вырезанной полости, то сила гравитационного притяжения шаров была бы равна при этом Вырезав полость, мы уменьшаем эту силу притяжения на силу F2, равную силе притяжения левого шара к вырезанной части:

При решении задач надо помнить, что сила тяготения действует между любыми телами, имеющими массу, но формула справедлива только для тел, которые можно считать материальными точками, а также для однородных тел шаровой формы. При этом расстояние r — это расстояние между центрами шаров.

1. Радиус R1 Луны примерно в 3,7 раза меньше, чем радиус R Земли, а масса m Луны в 81 раз меньше массы М Земли. Определите ускорение свободного падения тел на поверхности Луны.

Сила притяжения зависит от значений географической широты. Причина такой зависимости заключается в том, что произвольное тело, которое находится в покое относительно Земли, участвует в ее суточном вращении, поэтому при движении вокруг оси по кругу на тело действует сила притяжения и сила реакции, направленная под определенным углом. Равнодействующая этих сил и придает телу центростремительное ускорение.

В формуле m1 и m2 являются массами исследуемых материальных объектов; r – расстояние, определяемое между центрами масс расчетных объектов; G – постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли – сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Закон всемирного тяготения: физика

Разместим на высоте h над Землей, радиус которой — Rc, и масса — Mc, объект массой m. Между объектом и Землей действует все та же сила всемирного тяготения:

Если изучить формулу, становится очевидным, что чем выше объект исследования над плоскостью планеты, тем сила тяжести меньше и меньше. То есть гравитационное поле планеты увеличивается при приближении к ее центру.

Две силы взаимодействия, которые действуют на каждый из взаимодействующих объектов, одинаковы по величине, при этом противоположны по направлению в полном соответствии с 3 законом Ньютона (закон взаимодействия 2 материальных точек). Направлены силы вдоль прямой, которая соединяет обе материальные точки – их называют центральными. Гравитационное взаимодействие между этими объектами осуществляется полем тяготения. В каждой точке гравитационного поля на помещенный в него объект воздействует сила тяжести, пропорциональная массе этого объекта. Сила тяжести при этом не зависит от среды, в которой исследуемый объект (тело, точка) находится.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы – ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Поле тяготения имеет специфическое свойство – во время переноса объекта определенной массы (m) между различными точками поля тяготения действие силы тяжести не будет зависеть от траектории движения объекта, а будет зависеть исключительно от положения в гравитационном поле начальной и конечной точки перемещения объекта. Силы, обладающие подобными свойствами, назвали консервативными, а поле с действием таких сил – потенциальным.

В этом случае Ft называется силой тяжести – силой притяжения исследуемого объекта Землей (точнее, составляющей этой силы). Эта сила придает объекту ускорение свободного падения. Рассчитать его можно так: Ft=G·(Mc·m/r²) , где r=Rc+h – это расстояние от объекта до центра Земли, G – гравитационная постоянная.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение – на 0,34%.

  • Сила направлена вдоль прямой, соединяющей тела.
  • G — постоянная всемирного тяготения (гравитационная постоянная). Числовое значение зависит от выбора системы единиц.
  • В Международной системе единиц (СИ) G=6,67 . 10 -11 .

    Притяжение электрона к протону в атоме водорода » 2×10 -11 Н.

    гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

    Тяготение между Солнцем и Землей » 3,5×10 22 Н.

    1. Закон не объясняет причин тяготения, а только устанавливает количественные закономерности.
    2. В случае взаимодействия трех и более тел задачу о движении тел нельзя решить в общем виде. Требуется учитывать «возмущения», вызванные другими телами (открытие Нептуна Адамсом и Леверье в 1846 г. и Плутона в 1930).
    3. В случае тел произвольной формы требуется суммировать взаимодействия между малыми частями каждого тела.
    4. Закономерности движения планет и их спутников. Уточнены законы Кеплера.
    5. Космонавтика. Расчет движения спутников.
    6. Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798 г.

      Гравитационное взаимодействие существенно при больших массах.

      Закон всемирного тяготения

      Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

      Открыт Ньютоном в 1667 году на основе анализа движения планет (з-ны Кеплера) и, в частности, Луны. В этом же направлении работали Р.Гук (оспаривал приоритет) и Р.Боскович.

      Физический смысл гравитационной постоянной:

      Можно лишь догадываться о волнении, охватившем Ньютона, когда он пришел к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона — от падения брошенного камня на Землю до движения огромных космических тел. Ньютон нашел эту причину и смог точно выразить ее в виде одной формулы — закона всемирного тяготения.

      Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до ее поверхности у полюсов меньше, чем на экваторе. Другой, более существенной причиной является вращение Земли.

      Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Массу, определяющую способность тел притягиваться друг к другу, следует назвать гравитационной массой mг.

      Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы — самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

      С помощью этого закона можно рассчитать и движение искусственных спутников Земли, а также и созданных других межпланетных аппаратов.

      Но если подойти к этой теме, более кардинально, то выясняется, что закон всемирного тяготения не везде есть возможность его применения. Этот закон нашел свое применение для тел, которые имеют форму шара, его можно использовать для материальных точек, а также он приемлем для шара, имеющего большой радиус, где этот шар может взаимодействовать с телами, гораздо меньшими, чем его размеры.

      Важность открытия закона всемирного тяготения заключается в том, что с его помощью появилась возможность делать прогнозы солнечных и лунных затмений и с точностью рассчитывать движения космических кораблей.

      Как вы уже догадались из информации, предоставленной на этом уроке, что закон всемирного тяготения является основой в изучении небесной механики. А как вы знаете, небесная механика изучает движение планет.

      Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большой величины. Например, Земля и Луна притягиваются друг к другу с силой F≈2•10 20 H.

      Нужно иметь в виду, что закон всемирного тяготения (4.5) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис.4.2). Подобного рода силы называются центральными.

      Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

      Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при m1=m2=1 кг и R=1 м получаем G=F (численно).

      В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

      Гравитационное притяжение между человеком и Землей:

      Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает потенциальной энергией? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

      Что такое закон всемирного тяготения: формула великого открытия

      Отсюда получаем, что вторая космическая скорость равна:

      Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

      Постараемся узнать, что такое космическая скорость.

      Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

      Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

      Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

      Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

      Данная скорость называется первой космической скоростью:

      Насколько нам известно, сила тяжести равна:

      Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

      Физическая величина — ускорение свободного падения, оно постоянно для всех тел.

      Коэффициент пропорциональности G называется гравитационной постоянной.

      Формула закона силы притяжения

      массы тел одинаковы, если одинаковы действующие на них силы тяжести.

      «Тяготение существует ко всем телам вообще и пропорционально массе каждого из них. все планеты тяготеют друг к другу. » И. Ньютон

      На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

      Почему планеты обращаются вокруг Солнца?

      Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

      Земля сообщает Луне ускорение, которое не зависит от массы Луны и, как показали расчёты, в (60)2 раз меньше ускорения тел на Земле. Расстояние до Луны в 60 раз больше радиуса Земли. Отсюда Ньютон сделал вывод, что ускорение и соответственно сила притяжения тел к Земле обратно пропорциональны квадрату расстояния до центра Земли:

      Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы — закона всемирного тяготения.

      Ускорение по модулю определяется из второго закона Ньютона:

      Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

      Рассмотрим теперь вопрос об искусственных спутниках Земли. Искусственные спутники движутся за пределами земной атмосферы, и на них действуют только силы тяготения со стороны Земли. В зависимости от начальной скорости траектория космического тела может быть различной. Мы рассмотрим здесь только случай движения искусственного спутника по круговой околоземной орбите. Такие спутники летают на высотах порядка 200–300 км , и можно приближенно принять расстояние до центра Земли равным ее радиусу R З . Тогда центростремительное ускорение спутника, сообщаемое ему силами тяготения, приблизительно равно ускорению свободного падения g . Обозначим скорость спутника на околоземной орбите через υ1 . Эту скорость называют первой космической скоростью . Используя кинематическую формулу для центростремительного ускорения, получим:

      С таким ускорением, направленным к центру Земли, Луна движется по орбите. Следовательно, это ускорение является центростремительным ускорением . Его можно рассчитать по кинематической формуле для центростремительного ускорения (см. §1.6):

      В последующие годы Ньютон пытался найти физическое объяснение законам движения планет (см. §1.24), открытых астрономом И. Кеплером в начале XVII века, и дать количественное выражение для гравитационных сил. Зная как движутся планеты, Ньютон хотел определить, какие силы на них действуют. Такой путь носит название обратной задачи механики . Если основной задачей механики является определение координат тела известной массы и его скорости в любой момент времени по известным силам, действующим на тело, и заданным начальным условиям ( прямая задача механики ), то при решении обратной задачи необходимо определить действующие на тело силы, если известно, как оно движется. Решение этой задачи и привело Ньютона к открытию закона всемирного тяготения.

      По второму закону Ньютона причиной изменения движения, т. е. причиной ускорения тел, является сила. В механике рассматриваются силы различной физической природы. Многие механические явления и процессы определяются действием сил тяготения .

      Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной

      Одним из проявлений силы всемирного тяготения является сила тяжести . Так принято называть силу притяжения тел к Земле вблизи ее поверхности. Если M – масса Земли, R З – ее радиус, m – масса данного тела, то сила тяжести равна

      При удалении от поверхности Земли сила земного тяготения и ускорение свободного падения изменяются обратно пропорционально квадрату расстояния r до центра Земли. Рис. 1.10.2 иллюстрирует изменение силы тяготения, действующей на космонавта в космическом корабле при его удалении от Земли. Сила, с которой космонавт притягивается к Земле вблизи ее поверхности, принята равной 700 Н .

      Закон всемирного тяготения был открыт И. Ньютоном в 1682 году. Еще в 1665 году 23-летний Ньютон высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю. По его гипотезе между всеми телами Вселенной действуют силы притяжения (гравитационные силы), направленные по линии, соединяющей центры масс (рис. 1.10.1). Понятие центра масс тела будет строго определено в § 1.23. У тела в виде однородного шара центр масс совпадает с центром шара.

      В условиях такой слабой гравитации оказались космонавты, высадившиеся на Луне. Человек в таких условиях может совершать гигантские прыжки. Например, если человек в земных условиях подпрыгивает на высоту 1 м , то на Луне он мог бы подпрыгнуть на высоту более 6 м .

      Собственное гравитационное поле Луны определяет ускорение свободного падения g Л на ее поверхности. Масса Луны в 81 раз меньше массы Земли, а ее радиус приблизительно в 3,7 раза меньше радиуса Земли. Поэтому ускорение g Л определится выражением:

      Движение спутника можно рассматривать как свободное падение , подобное движению снарядов или баллистических ракет. Различие заключается только в том, что скорость спутника настолько велика, что радиус кривизны его траектории равен радиусу Земли.

      Таким образом, на высоких орбитах скорость движения спутников меньше, чем на околоземной орбите.